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Starting from the spectrum of Schrödinger operators on Rn , we propose a method
to detect critical points of the potential. We argue semi-classically on the basis of a
mathematically rigorous version of Gutzwiller’s trace formula which expresses spectral
statistics in term of classical orbits. A critical point of the potential with zero momentum
is an equilibrium of the flow and generates certain singularities in the spectrum. Via
sharp spectral estimates, this fluctuation indicates the presence of a critical point and
allows to reconstruct partially the local shape of the potential. Some generalizations of
this approach are also proposed.

KEY WORDS: Semi-classical analysis, Schrödinger operators, equilibriums in clas-
sical mechanics

1. INTRODUCTION

1.1. Background

Let Ph = −h2� + V be a Schrödinger operator where the potential V is smooth
on Rn and bounded from below. By a standard result in spectral theory, Ph has
a unique self-adjoint realization on a dense subset of L2(Rn). As usually, to this
quantum operator Ph we can associate a classical counterpart with the Hamiltonian
function p(x, ξ ) = ξ 2 + V (x) on the phase space Rn × Rn . In what follows, we
note �t the Hamiltonian flow of Hp = ∂ξ p.∂x − ∂x p.∂ξ .

In the present contribution we are particularly interested in a relation between
the asymptotic properties of eigenvalues λ j (h) of Ph:

Ph� j (x, h) = λ j (h)� j (x, h), h → 0,
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and the closed orbits of �t . In geometry spectrum and periodic orbits can be related,
in a very explicit way, by means of the Selberg and Duistermaat-Guillemin(8) trace
formulae. In quantum mechanics, the existence of such a relation is strongly
suggested by the correspondence principle which asserts that, in the semiclassical
regime h → 0, certain properties of Ph can be related to �t . In the physic literature,
a more precise formulation of this principle appeared in the works of Balian and
Bloch(1) and Gutzwiller.(10) The Gutzwiller formula is usually stated for the trace
of the resolvent:

∑
j∈N

1

λ j (h) − E
∼ Vol(�E )

(2πh)n
+ 1

ih

∑
γ∈�E

Aγ e
i
h Sγ , (1)

where in the r.h.s the sum concerns the closed orbits γ inside the surface

�E = {(x, ξ ) ∈ Rn × Rn / ξ 2 + V (x) = E}.

Also Vol(�E ) is the Riemannian volume of �E , Sγ and Aγ resp. the classical
action and the stability factor, including the Maslov phase, of γ .

In mathematics and in physics, such a relation between spectrum and periodic
orbits provides a powerful tool of analysis and computation. See e.g. Ref. 14
concerning the asymptotic behavior of eigenvectors � j (x, h) and Ref. 11 for
various applications in quantum chaos. But, for a Schrödinger operator on Rn , two
different divergences occur in Eq. (1):

1) The sum over the spectrum can be divergent. If the sum is convergent it
can also have a divergent behavior when h → 0.

2) The sum over closed orbits is generally divergent. This is the case if |Aγ |
does not decrease fast enough or if the number of periodic orbits of period
smaller than T is exponentially growing with T .

1.2. Mathematical Approach of the Gutzwiller Formula

As seen above, the question to remove divergences is important and we
explain below how to proceed. Assume that the spectrum of Ph is discrete in some
interval [E − ε, E + ε], a more global sufficient condition for this is given in
Sec. 2. An accessible problem is to study the asymptotic behavior of the spectral
distributions:

γ (E, h, ϕ) =
∑

|λ j (h)−E |≤ε

ϕ

(
λ j (h) − E

h

)
, as h → 0, (2)
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where ϕ is a function chosen to remove the divergences. To justify the terminology,
observe that the truncated spectral distribution:

σE,ε(x) =
∑

|λ j (h)−E |≤ε

δλ j (h)(x),

acting on a function ϕ shifted by E and scaled w.r.t. h provides:

γ (E, h, ϕ) =
〈
σE,ε(x), ϕ

(
x − E

h

)〉
.

In general, it is not possible to compute the spectrum of Ph and one motivation
is to derive statistics about eigenvalues. For example, in Eq. (2) the formal choice of
ϕ as the characteristic function of [−η, η], 0 < η < ε, determines the number N (h)
of bound states in [E − ηh, E + ηh]. Under certain conditions, it can be proven
that N (h) is proportional to h1−n (Weyl-law). Accordingly, for n > 1 this implies
that the finite sum defining γ (E, h, ϕ) involves a large number of eigenvalues as
h → 0.

A second aspect is that the asymptotic expansion of γ (E, h, ϕ) involves the
classical dynamics in a very explicit way. We recall that E is regular if ∇ p(x, ξ ) �=
0 on �E and critical otherwise, a critical point (x0, ξ0) of p is a fixed point of �t

since Hp(x0, ξ0) = 0. When E is not critical the asymptotics of Eq. (2) is well
determined by the closed orbits of �t on �E . For the full treatment of this problem,
and a complete formulation of the asymptotic expansion, we refer to Refs. 3 and
15.

We explain now why the problem stated in Eq. (2) leads to a mathematically
rigorous version of the Gutzwiller formula. First, for each h > 0 the sum is finite
and a fortiori convergent. A convenient choice of ϕ also ensures that this quantity
has an asymptotic expansion when h → 0 independently from the choice of ε. On
the other side, it will be proven that only the periods of �t inside supp(ϕ̂), the
support of the Fourier transform of ϕ:

ϕ̂(t) =
∫
R

eitxϕ(x) dx, (3)

contribute in the asymptotic expansion. This principle is useful since when supp(ϕ̂)
is compact then finitely many closed orbits of �E contribute and the second
divergence is solved. Hence if ϕ̂ ∈ C∞

0 (R), the space of smooth functions with
compact support, ϕ is in the Schwartz space S(R). Since elements of S(R) are
smooth with exponential decay at infinity, no divergence occurs and the size of ε

is irrelevant in the semi-classical approximation.
Finally, in Eq. (2) the scaling w.r.t. h is important. With this choice and via

Fourier transform considerations, we can use the propagator Uh(t) = exp(i t Ph/h),
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solution of the Schrödinger equation:

−ih∂tUh(t) = PhUh(t),

to obtain a precise control w.r.t. h. Roughly, Uh(t) can be expanded w.r.t. h via
a so-called WKB approximation. This expansion also provides the explicit rela-
tion with the classical dynamics. The precise technical justifications are given in
Sec. 3.

1.3. Critical Values and Contributions of Equilibrium

We have outlined the heuristic relation:

lim
h→0

γ (E, h, ϕ) ⇀↽ {(t, x, ξ ) ∈ R × �E/�t (x, ξ ) = (x, ξ )}.

In the r.h.s. any point (x, ξ ) of a periodic orbit appears only at times kT , k ∈ Z,
where T is the primitive period of the orbit. But an equilibrium point (x0, ξ0)
satisfies �t (x0, ξ0) = (x0, ξ0) for all t . Hence when E is no more a regular value
the nature of the set of fixed point changes and some new contributions appear in
the asymptotic expansion.

When E = Ec is critical, the asymptotic behavior of Eq. (2) is more com-
plicated and is closely related to the geometry of the flow inside �Ec . For a
non-degenerate critical point, i.e. d2 p is an invertible matrix when dp = 0, the
reader can consult.(2) The problem is treated there for quite general operators, also
including the case of a manifold of critical points, but for supp(ϕ̂) small around
the origin. For Schrödinger operators on Rn and supp(ϕ̂) compact but arbitrary,
the results of Ref. 2 are improved in Ref. 13.

Two important problems occur in presence of critical points. First, at every
point where dp = 0 the surface �Ec and the metric of �Ec are not smooth. Next,
the determination of the asymptotic expansion w.r.t. h can be very difficult. The
point is that γ (E, h, ϕ) can be expressed in terms of oscillatory integrals:

I (h) =
∫

R×R2n

a(t, x, ξ )e
i
h f (t,x,ξ ) dt dx dξ, h → 0.

Note this oscillating factor h−1, precisely imposed by the scaling w.r.t. h in Eq. (2).
Via the WKB approximation, the phase f is related to the flow so that the asymp-
totic behavior of I (h) is determined by the closed orbits. The technical problem
is that, in presence of an equilibrium, f has some degenerate critical points. The
stationary phase method cannot be applied and the asymptotic expansion of I (h)
is radically different: e.g. some terms hα , α ∈ Q and powers of log(h) generally
appear in this setting.
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1.4. Results and Strategy

Our objective is to relate some variations in the discrete spectrum of Ph with
the presence of fixed points for the classical system. Conversely, an attempt is
made to prove that the knowledge of such a spectral fluctuation can describe the
singularity of the potential. In theory, such a determination is possible since the
contributions of equilibriums are highly sensitive to the local shape of V .

We will consider the case of a potential V with finitely many critical points
x j

0 attached to local homogeneous extremum of V . An immediate consequence

is that p admits, locally, a unique critical point (x j
0 , 0) on the surface �E j

c
=

{(x, ξ ) ∈ R2n/ξ 2 + V (x) = V (x j
0 )}. A typical example is a polynomial double

well in dimension 1 where 3 critical points occur at the 2 minima and at the
maximum of V.

In fact, starting from a more precise relation:

lim
h→0

γ (E, h, ϕ) ⇀↽ {(t, x, ξ ) ∈ supp(ϕ̂) × �E/�t (x, ξ ) = (x, ξ )},

the core of the proof lies in 2 facts:

• Equilibriums have a continuous contribution w.r.t. the time t .
• A convenient choice of supp(ϕ̂) erases all other contributions.

Here, ‘continuous contribution w.r.t. t’ means that a fixed point contribute to the
asymptotic expansion of γ (E j

c , h, ϕ) in the form hα log(h)β 〈D, ϕ̂〉 with supp(D) =
R. Contrary to standard periodic orbits whom contributions are supported in the
set of periods, such a term supported on the line cannot be erased just by shrinking
the support of ϕ̂. For example, if supp(ϕ̂) contains no period of the flow the analysis
easily follows if we view γ (E, h, ϕ) as a function of E :

• The order w.r.t h of γ (E, h, ϕ) changes when E → E j
c . This indicates the

presence of an equilibrium for �t , a fortiori of a critical point for V .
• This discontinuity at E j

c describes the shape of V .

2. HYPOTHESES AND MAIN RESULT

Let p(x, ξ ) = ξ 2 + V (x), where the potential V is real valued and smooth on
Rn . To this Hamiltonian is attached the h-differential operator Ph = −h2� + V (x)
and by a classical result Ph is essentially self-adjoint if V is bounded from below.

Remark 1. We are here mainly interested in the case of Schrödinger operators
but a generalization to an h-admissible operator (e.g. in the sense of Ref. 17) of
principal symbol ξ 2 + V (x) is given in the last section.
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First, to obtain a well defined spectral problem, we use:

(H1) V ∈ C∞(Rn). There exists C ∈ R such that lim inf∞ V > C .

Note that (H1) is always satisfied if V goes to infinity at infinity. Now, consider an
energy interval J = [E1, E2] with E2 < lim inf∞ V . In the following we note:

J (ε) = [E1 − ε, E2 + ε]. (4)

For ε < ε0 the set p−1(J (ε)) is compact. By Theorem 3.13 of Ref. 17 the spectrum
σ (Ph) ∩ J (ε) is discrete and consists in a sequence λ1(h) ≤ λ2(h) ≤ · · · ≤ λ j (h)
of eigenvalues of finite multiplicities, if ε and h are small enough.

The main tool of this work will be the spectral distribution:

γ (E, h, ϕ) =
∑

λ j (h)∈J (ε)

ϕ

(
λ j (h) − E

h

)
, (5)

more precisely, the asymptotic information contained in this object. To avoid any
problem of convergence we impose the condition:

(H2) We have ϕ̂ ∈ C∞
0 (R) with a sufficiently small support near the origin.

Remark 2. (H2) is used to erase contributions of non-trivial closed orbits and
can be relaxed to ϕ̂ ∈ C∞

0 (R) with a weaker result. A more precise description of
supp(ϕ̂) is given in Lemma 10. For a non-degenerate minimum, it is more comfort-
able to assume that supp(ϕ̂) contains no period of d�t (z0). Some singularities,
not relevant here, are generated by these periods and we refer to refs. 2, 13 for a
detailed study of these contributions.

To simplify notations we write z = (x, ξ ) ∈ R2n and �E = p−1({E}) and we
use the subscript Ec to distinguish out critical values of p. Of course one can also
work with T ∗Rn 
 Rn × Rn . In J there is finitely many critical values E1

c , . . . , El
c

and in p−1(J ) finitely many fixed points z1
0, . . . , zm

0 , m ≥ l. We impose now the
type of singularity:

(H3) On each �E j
c

the symbol p has isolated critical points z j
0 = (x j

0 , 0).

These critical points can be degenerate but are associated to a local extremum of
V :

V (x) = Ec + V2k(x) + O
(∣∣∣∣x − x j

0

∣∣∣∣2k+1)
, k ∈ N∗, (6)

where V2k , homogeneous of degree 2k, is definite positive or negative.

Remark 3. For non-degenerate singularities we can apply the results of Ref. 2
and the extremum condition is not really necessary.
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The next assumption, erases the mean values in the trace formula:

(H4) ϕ̂ is flat at 0, i.e. ϕ̂( j)(0) = 0, ∀ j ∈ N.

We could weaken (H4) to ϕ̂( j)(0) = 0, ∀ j ≤ j0, where j0 depends only on the
degree of the singularities of V (cf. Sec. 4). Note that such a ϕ exists. Pick
g ∈ C∞

0 (R), supp(g) ⊂ [−M, M], then ϕ̂(t) = t2 j0 g(t) satisfies our hypotheses.
In this case, we can pick g even so that ϕ is real.

Finally, to relax a bit (H2) we need a control on the contribution of closed
orbits. To do so, we impose the classical condition:

(H5) All periodic trajectories of the flow are non-degenerate.

Non-degenerate closed orbits are those whose Poincaré map does not admit 1 as
eigenvalue and are isolated. The main result is:

Theorem 4. Assume (H1) to (H4) satisfied. As h tends to 0+, we have:

γ (s, h, ϕ) =
{
O(h∞) if s ∈ [E1, E2]\{E1

c , . . . , El
c

}
,

O( f j (h)) if s = E j
c , j ∈ {1, . . . , l},

where each f j (h) has a finite order w.r.t. h.

Precisely, if s = E j
c carries a single minimum of degree 2k we obtain:

f j (h) = C(n, k, ϕ)h
n
2 + n

2k −n. (7)

But for a local maximum of V we can obtain a logarithm of h:

f j (h) = C(n, k, ϕ)h
n
2 + n

2k −n log(h) j , j = 0 or 1. (8)

In fact if the critical surface carries more than one critical point then f j is the sum
of their respective contributions. Note that for n = 1 and k > 1 the singular term
has negative order w.r.t. h. A more detailed formulation of each f j (h) is given in
Propositions 12 and 13. An interesting property is that the singularity of γ (s, h, ϕ)
describes partially the singularity of V .

Corollary 5. Assume that �Ec carries exactly one singularity (x0, 0). Then the
discontinuity of γ (s, h, ϕ) at s = Ec determines the degree of the critical point
and the spherical average of the germ of V in x0.

This principle is limited in presence of multiple equilibriums on the same
surface since the sum of contributions of each critical point could lead to a
compensation. In (H2) the condition that supp(ϕ̂) is small implies a very accurate
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spectral estimate (e.g. by a Paley-Wiener estimates for ϕ). It is possible to relax
this assumption but the result is weaker:

Corollary 6. Assume (H1), (H3), (H4) and (H5) satisfied and that ϕ̂ ∈ C∞
0 (R),

then we obtain:

γ (s, h, ϕ) = O(1) if s ∈ [E1, E2]\{E1
c , . . . , El

c}.
For critical values of p, estimates are the same as in Theorem 4.

The justification, given in Sec. 4, is that in this case the asymptotics is given
by a finite sum over periodic orbits of energy s. This result is weak if the singularity
of V is non-degenerate since the equilibrium has a contribution of degree 0 w.r.t. h.
(cf. Propositions 12 and 13 or Sec. 3 of Ref. 2). Finally, we would like to emphasize
that a maximum is more difficult to detect contrary to a local minimum which is
isolated on the energy surface.

3. OSCILLATORY REPRESENTATION

The construction below is more or less classical and will be sketchy. The only
change is the choice of a more global localization around J = [E1, E2]. Strictly
speaking, with (H1), we could also consider ] − ∞, E2]. Let be ϕ ∈ S(R) with
ϕ̂ ∈ C∞

0 (R), we recall that:

γ (E, h, ϕ) =
∑

λ j (h)∈J (ε)

ϕ

(
λ j (h) − E

h

)
, J (ε) = [E1 − ε, E2 + ε],

with p−1(J (ε)) compact in T ∗Rn . For ε > 0 small enough, we localize around J
with a cut-off � ∈ C∞

0 (]E1 − ε, E2 + ε[), such that � = 1 on J and 0 ≤ � ≤ 1
on R. We accordingly split-up our spectral distribution as:

γ (E, h, ϕ) = γ1(E, h, ϕ) + γ2(E, h, ϕ),

with:

γ1(E, h, ϕ) =
∑

λ j (h)∈J (ε)

(1 − �)(λ j (h))ϕ

(
λ j (h) − E

h

)
,

γ2(E, h, ϕ) =
∑

λ j (h)∈J (ε)

�(λ j (h))ϕ

(
λ j (h) − E

h

)
.

Since ϕ ∈ S(R) a classical estimate, see e.g. Lemma 1 of Ref. 4, is:

γ1(E, h, ϕ) = O(h∞), as h → 0+. (9)
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By inversion of the Fourier transform we have:

�(Ph)ϕ

(
Ph − E

h

)
= 1

2π

∫
R

ei t E
h ϕ̂(t)exp

(
− i t

h
Ph

)
�(Ph) dt.

The trace of the left hand-side is γ2(E, h, ϕ) and Eq. (9) provides:

γ (E, h, ϕ) = 1

2π
Tr

∫
R

ei t E
h ϕ̂(t)exp

(
− i t

h
Ph

)
�(Ph) dt + O(h∞). (10)

Eq. (10) is very close to the classical Poisson summation formula on S1 since the
r.h.s. is expressed below in term of the classical dynamics and this asymptotic
relation justifies the terminology of ‘trace formula.’ Moreover, this formulation
shows that the scaling w.r.t. h, imposed in the definition of γ (E, h, ϕ), is the best
one since we will solve the semi-classical propagator homogeneously w.r.t. h.

Let Uh(t) = exp(− i t
h Ph) be the quantum propagator. We approximate

Uh(t)�(Ph) by a Fourier integral operator (FIO) depending on h. Let � be the
Lagrangian manifold associated to the flow of p:

� = {(t, τ, x, ξ, y, η) ∈ T ∗R × T ∗Rn × T ∗Rn : τ = p(x, ξ ),

(x, ξ ) = �t (y, η)},
and I (R2n+1,�) the class of oscillatory integrals based on R2n+1 and whose
Lagrangian manifold is �. The next result is a semi-classical version of a well
known result on the propagator, see e.g. Duistermaat.(7)

Theorem 7. The operator Uh(t)�(Ph) is an h-FIO associated to �. For each
N ∈ N there exists U (N )

�,h(t) with integral kernel in Hörmander’s class I (R2n+1,�)

and R(N )
h (t) bounded, with a L2-norm uniformly bounded for 0 < h ≤ 1 and t in

a compact subset of R, such that:

Uh(t)�(Ph) = U (N )
�,h(t) + hN R(N )

h (t).

This result provides the existence of an asymptotic expansion in power of h
with a remainder that can be controlled since supp(ϕ̂) is a compact. After perhaps
a reduction of ε, this remainder R(N )

h (t) is estimated via:

Corollary 8. Let �1 ∈ C∞
0 (R), with �1 = 1 on supp(�) and supp(�1) ⊂]E1 −

2ε, E2 + 2ε[, then ∀N ∈ N:

Tr

(
�(Ph)ϕ

(
Ph − E

h

))
= 1

2π
Tr

∫
R

ϕ̂(t)e
i
h t EU (N )

�,h(t)�1(Ph) dt + O(hN−n).
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For a proof of this result, based on the cyclicity of the trace and a priori
estimates on the spectral projectors (see Ref. 17), we refer to Ref. 4. For the
particular case of a Schrödinger operator the BKW ansatz shows that the integral
kernel of U (N )

�,h(t) can be recursively constructed as:

K (N )
h (t, x, y) = 1

(2πh)n

∫
Rn

b(N )
h (t, x, y, ξ )e

i
h (S(t,x,ξ )−〈y,ξ〉)dξ,

b(N )
h = b0 + hb1 + · · · + hN bN ,

where S satisfies the Hamilton-Jacobi equation:

p(x, ∂x S(t, x, ξ )) + ∂t S(t, x, ξ ) = 0,

with initial condition S(0, x, ξ ) = 〈x, ξ 〉. In particular we obtain that:

{(t, ∂t S(t, x, η), x, ∂x S(t, x, η), ∂ηS(t, x, η),−η)} ⊂ �,

and that the function S is a generating function of the flow, i.e.:

�t (∂ηS(t, x, η), η) = (x, ∂x S(t, x, η)). (11)

We insert this approximation in Eq. (10), we set x = y and we integrate w.r.t. x .
Modulo an error O(hN−n), we obtain that γ (E, h, ϕ) equals:

1

(2πh)n

∫
R×T ∗Rn

e
i
h (S(t,x,ξ )−〈x,ξ〉+t E)a(N )

h (t, x, ξ )ϕ̂(t) dt dx dξ, (12)

where a(N )
h (t, x, η) = b(N )

h (t, x, x, η).

Remark 9. By Theorem 3.11 & Remark 3.14 of Ref. 17, �(Ph) is h-admissible.
Moreover, the symbol is compactly supported in p−1([E1 − ε, E2 + ε]). This point
allows to consider only oscillatory integrals with compact support for the evalua-
tion of the spectral distributions.

3.1. Microlocalization of the Trace

If ψ ∈ C∞
0 (T ∗Rn), we recall that ψw(x, hDx ) is the linear operator obtained

by Weyl-quantization of ψ , i.e.:

ψw(x, hDx ) f (x) = 1

(2πh)n

∫
R2n

e
i
h 〈x−y,ξ〉ψ

(
x + y

2
, ξ

)
f (y) dy dξ.
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Mainly, the contribution of an equilibrium z0 ∈ �Ec can be reached via:

γz0 (Ec, h, ϕ) = 1

2π
Tr

∫
R

ei t Ec
h ϕ̂(t)ψw(x, hDx )exp

(
− i

h
t Ph

)
�(Ph) dt, (13)

where ψ ∈ C∞
0 (T ∗Rn) is equal to 1 near z0. This principle will also be useful to

obtain a weak generalization in presence of multiple equilibriums.
We recall some basics on symbolic calculus with FIO. Hörmander’s class

of distributions with Lagrangian manifold � over Rn is noted I (Rn,�). If
(x0, ξ0) ∈ � and ϕ(x, θ ) ∈ C∞(Rn × RN ) parameterizes � in a sufficiently small
neighborhood U of (x0, ξ0), then for each uh ∈ I (Rn,�) and χ ∈ C∞

0 (T ∗Rn),
supp(χ ) ⊂ U, there exists a sequence of amplitudes c j (x, θ ) ∈ C∞

0 (Rn × RN )
such that for all L ∈ N:

χw(x, hDx )uh =
∑

−d≤ j<L

h j I (c j e
i
h ϕ) + O(hL ).

Hence, for each N ∈ N∗ and modulo an error O(hN−d ), the localized trace
γz0 (Ec, h, ϕ) of Eq. (13) can be written as:

(2πh)−d
∫

R×R2n

e
i
h (S(t,x,ξ )−〈x,ξ〉+t Ec)ã(N )

h (t, x, ξ )ϕ̂(t) dt dx dξ. (14)

To get the right power −d of h, we apply results of Duistermaat(7) on the order:
h-pseudo-differential operators ψw(x, hDx ) are of order 0 w.r.t. 1/h. Since the
order of Uh(t)�(Ph) is − 1

4 , we have:

ψw(x, hDx )Uh(t)�(Ph) ∼ (2πh)−n

∫
Rn

ã(N )
h (t, x, y, η)e

i
h (S(t,x,η)−〈y,η〉) dy.

Multiplying by ϕ̂(t)e
i
h t Ec and passing to the trace we find Eq. (14) with d = n and

we write again ã(N )
h (t, x, η) for ã(N )

h (t, x, x, η). In particular:

ã(0)
h (t, x, x, η) = ψ(x, η)a0(t, x, x, η), (15)

is independent of h and is compactly supported w.r.t. (x, η).

4. PROOF OF THE MAIN RESULT

4.1. Classical Dynamics Near the Equilibrium

A generic critical points of the phase function of Eq. (12) satisfies:


E = −∂t S(t, x, ξ ),
x = ∂ξ S(t, x, ξ ),
ξ = ∂x S(t, x, ξ ),

⇔
{

p(x, ξ ) = E,

�t (x, ξ ) = (x, ξ ),
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where the right hand side defines a closed trajectory of the flow inside �E . Note
that equilibriums are also included. By the non-stationary phase lemma, outside
of the critical set the contribution is O(h∞).

Let be Ec any critical value in [E1, E2] and z0 an equilibrium of �Ec . We
choose a function ψ ∈ C∞

0 (T ∗Rn), with ψ = 1 near z0, hence:

γ2(Ec, h, ϕ) = 1

2π
Tr

∫
R

ei t Ec
h ϕ̂(t)ψw(x, hDx ) exp

(
− i

h
t Ph

)
�(Ph) dt

+ 1

2π
Tr

∫
R

ei t Ec
h ϕ̂(t)(1 − ψw(x, hDx )) exp

(
− i

h
t Ph

)
�(Ph) dt.

If there is no other singularity on �Ec with (H5) the asymptotic expansion of the
second term is given by the semi-classical trace formula on a regular level. For
finitely many critical point on �Ec , we can repeat the procedure. The first term
is micro-local and precisely generate the singularity in Theorem 4. We note �

the discrete set of critical points z j
0 in p−1(J ). The next result provides a global

information on the periods of the classical flow.

Lemma 10. There exists a T > 0, depending only on V and J = [E1, E2], such
that �t (z) �= z for all z ∈ p−1(J )\� and all t ∈] − T, 0[∪]0, T [.

Proof. If Hp is our hamiltonian vector field and z = (x, ξ ) we have:

||Hp(z1) − Hp(z2)||2 = 4||ξ1 − ξ2||2 + ||∇x V (x1) − ∇x V (x2)||2.
When z1 and z2 are in the compact p−1(J ) there exists b > 0 such that:

||∇x V (x1) − ∇x V (x2)|| ≤ b||x1 − x2||.
Hence, there exists a > 0 such that:

||Hp(z1) − Hp(z2)|| ≤ a||z1 − z2||, ∀z1, z2 ∈ p−1(J ).

The main result of Ref. 18 shows that any periodic orbit inside p−1(J ) has a period
τ ≥ 2π/a > 0. The lemma follows with T := T (V, J ) = 2π/a. �

Remark 11. The result of Ref. 18 is optimal (harmonic oscillator). Note that T
is decreasing if one increase the size of J . Lemma 10 provides a total control on
the r.h.s. of the trace formula: if ϕ̂ ∈ C∞

0 (] − T, T [), the only contribution arises
from the set {(t, z0), t ∈ supp(ϕ̂)}.

Now, we restrict our attention to the singular contribution generated by one
critical point. As pointed out in Sec. 2, for a non degenerate extremum a minor
technical problem could occur. We recall that the linearized flow d�t is the
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differential of the flow �t w.r.t. initial conditions z = (x, ξ ). When z0 is a critical
point of p, the linear map z �→ d�t (z0)z can be interpreted as the Hamiltonian
flow of z �→ 〈d2 p(z0)z, z〉. After perhaps a change of local coordinates near x0, we
can assume that d2V (x0) is diagonal. If x0 is a maximum of the potential d�t (z0)
has no non-zero period which ends immediately the discussion. If x0 is a minimum
d�t (z0) is elliptic with primitive periods (T1, .., Tn) generated by the eigenvalues of
d2V (x0). But the constant b of Lemma 10 is certainly bigger than the spectral radius
of d2V (x0) and hence we have the inequality T < min{T1, . . . , Tn}. Following the
approach of Ref. 2 or 13, if supp(ϕ̂) ⊂] − T, T [ the associated contribution is
smooth on supp(ϕ̂)\{0}. For a degenerate critical point as in (H3) a surprising
result, established in Refs. 5 and 6, is that the only singularity is located at t = 0.
Hence no extra assumption on ϕ̂ is required.

4.2. The Trace as an Energy Function

As seen in Sec. 2 it suffices to study the localized problem:

γz0 (Ec, h, ϕ) = 1

2π
Tr

∫
R

ei t Ec
h ϕ̂(t)ψw(x, hDx ) exp

(
− i t

h
Ph

)
�(Ph) dt.

Here ψ ∈ C∞
0 (T ∗Rn) is micro-locally supported near z0 (cf. Sec. 2). For the con-

venience of the reader we recall the contributions of equilibriums in the trace
formula. We note S(Sn−1) the surface of Sn−1 and in the next two propositions it
is understood that conditions (H1) to (H3) are satisfied.

Proposition 12. If x0 is a local minimum we have:

γz0 (Ec, h, ϕ) ∼ h
n
2 + n

2k −n
∑

j,l∈N2

h
j
2 + l

2k � j,l(ϕ),

where the � j,l are some distributions. The leading coefficient is:

h
n
2 + n

2k −n S(Sn−1)

(2π )n

∫
Sn−1

|V2k(η)|− n
2k dη

∫
R+×R+

ϕ(u2 + v2k)un−1vn−1 du dv.

Proposition 13. If x0 is a local maximum we have:

γz0 (Ec, h, ϕ) ∼ h
n
2 + n

2k −n
∑

m=0,1

∑
j,l∈N2

h
j
2 + l

2k log(h)m� j,l,m(ϕ).
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If n(k+1)
2k /∈ N, the first non-zero coefficient is given by:

h
n
2 + n

2k −n〈Tn,k, ϕ〉S(Sn−1)

(2π )n

∫
Sn−1

|V2k(η)|− n
2k dη.

The distributions Tn,k are respectively given by:

〈Tn,k, ϕ〉 =
∫
R

(
C+

n,k |t |
n k+1

2k −1
+ + C−

n,k |t |
n k+1

2k −1
−

)
ϕ(t) dt, if n is odd,

〈Tn,k, ϕ〉 = C−
n,k

∫
R

|t |n
k+1
2k −1

− ϕ(t)dt, if n is even.

But if n(k+1)
2k ∈ N and n is odd then the top-order term is:

Cn,k log(h)h
n
2 + n

2k −n S(Sn−1)

(2π )n

∫
Sn−1

|V2k(η)|− n
2k dη

∫
R

|t |n k+1
2k −1ϕ(t) dt.

Finally, if n(k+1)
2k ∈ N and n is even, C+

n,k = C−
n,k and we have:

C±
n,kh

n
2 + n

2k −n 1

(2π )n

∫
Sn−1

|V2k(η)|− n
2k dη

∫
R

|t |n k+1
2k −1ϕ(t) dt.

Remark 14. To emphasize the consistency of these results we precise that Cn,k ,
C±

n,k are non-zero universal constants depending only on n and k. Such terms hα

and hα log(h), α ∈ Q never appear if E is regular.

For a proof we refer to Refs. 5 and 6 resp. for a local minimum and maximum.
The case k = 1 was treated in Ref. 2. With (H5) and E regular, we have:

γ (E, h, ϕ) ∼ h1−n

(2π )n
LVol(�E )ϕ̂(0) +

∞∑
j=1

h1−n+ j c j (ϕ̂)(0)

+
∑
ρ∈�E

e
i
h Sρ eiπµρ/4

∞∑
j=0

Dρ, j (ϕ̂)(Tρ)h j .

We refer to Ref. 15 for a proof. In the r.h.s. the sum concerns periodic orbits ρ of
energy E and is finite since supp(ϕ̂) is compact. Here Sρ , µρ and Tρ are resp. the
action, the Maslov-index and the period of the closed orbit ρ and both c j , Dρ, j

are differential operators of order j . If ϕ satisfies (H4) we have c j (ϕ̂)(0) = 0 and
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for each s ∈ [E1, E2] regular:

γ (s, h, ϕ) ∼
∑
ρ∈�s

e
i
h Sρ eiπµρ/4

∞∑
j=0

Dρ, j (ϕ̂)(Tρ)h j . (16)

We accordingly obtain that:

γ (s, h, ϕ) = O(1), ∀s ∈ [E1, E2]\{E1
c , . . . , El

c

}
. (17)

This point will justify Corollary 6. By Lemma 10, we have Tρ ≥ T uniformly
w.r.t. s ∈ [E1, E2]. Hence if s is not critical and (H2) is satisfied the sum over the
periods of Eq. (16) is simply 0 and in Eq. (17) we obtain in fact O(h∞). Note that
(H5) is not required here. For s = Em

c critical there is a continuous contribution
w.r.t. t in the spectral distribution. A fortiori, a choice of ϕ̂ flat at the origin does
not erase this term. We have:

γ
(
Em

c , h, ϕ
) ∼

Nm∑
j=1

f j (h),

where Nm is the number of equilibrium on �Em
c

and each f j (h) is given by the
leading term of Propositions 12 and 13.

Note that the bottom of a symmetric double well gives a similar answer as a
single well of same nature. Hence without microlocal considerations it is difficult
to distinguish these 2 different settings.
Proof of Corollary 4. First, the Weyl-law for regular energies:

γ (E, h, ϕ) ∼ (2πh)1−nϕ̂(0)Lvol(�E ),

computes the dimension n. Now assume given a critical value Ec with a single
critical point. The only choice of the spectral function ϕ allows to detect Ec via
the singularity f (h) of Theorem 4. The knowledge of f (h) determines the order
of the contribution. For example, if:

f (h) ∼ Chα log(h),

the critical point is a maximum and α computes the degree 2k of the singularity.
With ϕ̂, the knowledge of k allows to compute the quantity:∫

R

|t |n k+1
2k −1ϕ(t) dt.

A fortiori C determines the average of |V2k |− n
2k on Sn−1. Without log(h), the nature

of the critical point can be detected by a symmetry argument w.r.t. ϕ since we a
priori know n and k. In view of Propositions 12 and 13 we can choose ϕ odd,
even, symmetric or non-symmetric w.r.t. the origin to conclude. Note that if ϕ̂ is
not even ϕ is a priori complex valued. �
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The spherical average of V2k is a Jacobian. For example we have:
∫
Rn

e−|V2k (x)|dx = 1

2k
�

(
n

2k

) ∫
Sn−1

|V2k(η)|− n
2k dη.

A similar result holds for the pullback f (V2k(x)), if f ∈ L1(R+, r
n
2k −1dr ).

Remark 15. Enlarging the list of singularities would provide a bigger “dictio-
nary.” The case of non-homogeneous singularities for V is still an open problem,
in particular because the determination of an explicit asymptotic expansion w.r.t.
h can be very difficult.
We propose now 2 slight generalizations of the main result.

(a) Effect of a sub-principal symbol.
Because of some recent developments of Helffer and Sjöstrand for

Witten Laplacians, see e.g. Ref. 12 for an overview and references, we
show shortly how to extend the result of Theorem 4 to the case of an
h-admissible operator. For example, the Witten Laplacian on zero-forms
is:

�
(0)
f,h = −h2� + 1

4
|∇ f (x)|2 − h

2
� f (x), f ∈ C∞(Rn),

whose symbol p(x, ξ ) = p0(x, ξ ) + hp1(x, ξ ) depends on h. More gen-
erally, it is possible to consider operators Ph of symbol ph ∼ ∑

h j p j

(Borel sum) with principal symbol p0(x, ξ ) = ξ 2 + V (x) and a subprin-
cipal symbol p1 �= 0. Starting from the results of Sec. 3 we proceed as
follows.

To each element uh of I (Rn,�) we can associate canonically a
principal symbol e

i
h Sσprinc(uh), where S is a function on � such that

ξ dx = d S on �. In fact, if uh can locally be represented by an oscillatory
integral with amplitude a and phase ϕ, then we have S = Sϕ = ϕ ◦ i−1

ϕ

and σprinc(uh) is a section of |�| 1
2 ⊗ M(�), where M(�) is the Maslov

vector-bundle of � and |�| 1
2 the bundle of half-densities on �. When

p1 �= 0, in the global coordinates (t, y, η) on �, the half-density of Uh(t)
is given by:

ν(t, y, η) = exp


i

t∫
0

p1(�s(y,−η)) ds


 |dt dy dη| 1

2 . (18)

For this expression, related to the resolution of the first transport equation
for the propagator, we refer to Duistermaat and Hörmander.(9) Accord-
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ingly, the FIO approximating the propagator has the amplitude:

ã(t, z) = a(t, z) exp


i

t∫
0

p1(�s(z)) ds


 .

Since z0 is an equilibrium we have p1(�s(z0)) = p1(z0), ∀s, and:

ã(t, z0) = ϕ̂(t)eitp1(z0). (19)

If the subprincipal symbol vanishes at the critical point, which is the
case in a lot of practical situations, the trace formula remains the same. If
p1(z0) �= 0, by Fourier inversion formula we replace ϕ(t) by ϕ(t + p1(z0))
in all integral formulae of Propositions 12 and 13. Note that, with (H4),
this has absolutely no effect for the mean values and hence on the main
result.

(b) A micro-local approach.
We inspect now the case of an energy surface supporting more than

one critical point, but with a much more restrictive method. Let be K =
p−1(J ) ⊂ T ∗Rn and r0 = 1

2 inf
i �= j

d(zi , z j ), where d is any distance on T ∗Rn .

Each open ball B(z, r0) ⊂ T ∗Rn contains at most 1 critical point for each
z ∈ K . Clearly, we can cover a compact neighborhood of K by a finite
number of balls B(z, r0). With a partition of unity, adapted to this covering,
we obtain:

N∑
j=1

ψw
j (x, hDx ) = Id, onC∞

0 (K ).

For each s ∈ J , we obtain:

Tr
∫
R

ϕ̂(t)�(Ph)e
i
h t(Ph−s)dt =

N∑
j=1

Tr
∫
R

ϕ̂(t)ψw
j (x, hDx )�(Ph)e

i
h t(Ph −s)dt.

Note that the r.h.s. is studied in Sec. 2. By the same argument as before,
if �s ∩ supp(ψ j ) contains no critical point we obtain:

Tr
∫
R

ϕ̂(t)ψw
j (x, hDx )�(Ph)e

i
h t(Ph −s)dt = O(h∞).

And if there is exactly one critical point z0 ∈ �s in supp(ψ j ) we have:

Tr
∫
R

ϕ̂(t)ψw
j (x, hDx )�(Ph)e

i
h t(Ph −s)dt = ψ(z0) f j (h),

and by construction no cancellation can occur.
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Remark 16. In Corollary 6 we have considered (H5) for the flow. A
similar result holds for a chaotic dynamics and an isolated degenerate
closed orbit can be treated as in Ref. 16. Finally, using the results of
Ref. 15 one can extend Corollary 6 to the case of families of periodic
orbits of dimension d ≤ n.
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